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Motivation

• Choosing the right features in a Machine Learning task is an
important step to achieve good generalisation performance.
Indeed, neural networks can be seen as good feature learners,
with the last layer performing a generalised linear task.

• Yet, the traditional statistical analysis based on uniform
convergence bounds is agnostic to data structure.

Worst-case

Agnostic to structure

Often too broad

Typical-case

Model for data

Often too simplistic

Aim: building better models for structured features

Gaussian covariate model

We introduce a teacher-student Gaussian covariate model
(GCM) for studying structured features. Consider a set of jointly
Gaussian feature vectors:[

u
v

]
∈ Rp+d ∼ N

(
0,
[

Ψ Φ
Φ> Ω

])
. (1)

Labels are generated from the teacher features u ∈ Rp:

yµ = f0

(
1
√
p
θ>0 uµ

)
, (2)

Where f0 : R → R is a (potentially random) scalar function and
θ0 ∈ Rp are fixed weights. The goal is to characterise the learning
performance of a student model:

ŷ(v) = f̂

(
1√
d
v>ŵ

)
(3)

obtained through empirical risk minimisation:

ŵ = argmin
w∈Rd

 n∑
µ=1

g

(
w>vµ√

d
, yµ
)

+ λ

2
||w||22

 , (4)

where g is a convex loss function, λ > 0 the regularisation strength.

Goal
Characterise the generalisation and training performances of the ERM
predictor ŵ ∈ Rd:

Egen.(ŵ) = E
[
ĝ
(
f̂ (v>newŵ), f0(u>newθ0)

)]
(5)

Etrain.(ŵ) = 1
n

n∑
µ=1

g
(
ŵ>vµ, yµ

)
(6)

in the high-dimensional limit n, p, d → ∞ with α ≡ n/d and γ ≡ p/d
fixed, where g is the loss and ĝ is a performance measure.

Main technical result

Let Ω = S>diag(ωi)S be the spectral decomposition of Ω. Let:

ρ ≡ 1
d
θ>0 Ψθ0 ∈ R, θ̄ ≡ SΦ>θ0√

ρ
∈ Rd (7)

and define the joint empirical density µ̂d between (ωi, θ̄i):

µ̂d(ω, θ̄) ≡ 1
d

d∑
i=1

δ(ω − ωi)δ(θ̄ − θ̄i). (8)

We assume that in the high-dimensional limit the spectral distributions of
the matrices Φ,Ψ and Ω converge to distributions such that the limiting
joint distribution µ is well-defined, and their maximum singular values
are bounded with high probability.

Closed-form asymptotics

Theorem 1. (informal) In the asymptotic limit, the training and
generalisation errors (5) of the estimator ŵ ∈ Rd solving the empir-
ical risk minimisation problem in eq. (4) verify:

Etrain.(ŵ) P−−−→
d→∞

Es,h∼N (0,1) [g (z(V ?,m?, q?), f0(
√
ρs))]

Egen.(ŵ) P−−−→
d→∞

E(ν,λ)

[
ĝ
(
f̂ (λ), f0(ν)

)]
(9)

where we have defined the scalar random function z(V,m, q) =
proxV g(.,f0(√ρs))(ρ−1/2ms +

√
q − ρ−1m2h), with:

proxV g(.,y)(x) = argmin
z∈R

{
g(z, y) + 1

2V
(x− z)2

}
(10)

and where (ν, λ) are jointly Gaussian scalar variables:

(ν, λ) ∼ N
(

0,
[
ρ m?

m? q?

])
. (11)

The overlap parameters (V ?, q?,m?) are prescribed by the unique
fixed point of the following set of self-consistent equations:

V = E(ω,θ̄)∼µ

[
ω

λ+V̂ ω

]
m = m̂√

γE(ω,θ̄)∼µ

[
θ̄2

λ+V̂ ω

]
q = E(ω,θ̄)∼µ

[
m̂2θ̄2ω+q̂ω2

(λ+V̂ ω)2

]

V̂ = α

V (1− Es,h∼N (0,1)[z′(V,m, q)])
m̂ = 1√

ργ
α
VEs,h∼N (0,1)

[
sz(V,m, q)− m√

ρz
′(V,m, q)

]
q̂ = α

V 2Es,h∼N (0,1)

[(
m√
ρs +

√
q−m2

ρ h−z(V,m, q)
)2
] (12)

and z′(V,m, h) = prox′V g(.,f0(√ρs))(ρ
−1/2ms+

√
q − ρ−1m2h) is the

first derivative of the proximal operator.

Modelling realistic data
Let {xµ}nµ=1 denote n independent samples from a data set on X which
we would like to learn. The idea is to use the GCM to capture the
learning performance with the following non-linear features:

x 7→ u = ϕt(x) ∈ Rp, x 7→ v = ϕs(x) ∈ Rd (13)

In general [u,v] stemming from non-linear feature maps are not jointly
Gaussian, but in the high-dimensional limit we observe the generalisation
and training error often depend only on the second order statistics.

Conjecture: Gaussian equivalence [2, 3]

For a wide class of data distributions {xµ}nµ=1, and features maps
u = ϕt(x),v = ϕs(x), the generalisation and training errors of
estimator (4) are asymptotically captured by the equivalent

Gaussian model (1), where [u,v] are jointly Gaussian variables, and
thus by the closed-form expressions of Theorem 1:

Egen.\train.(ν, β) �
n,p,d→∞

Egen.\train.(ν2, β2) (14)

where ν = θ>0 u, β = ŵ>v and (ν2, β2) are their Gaussian
equivalent obtained by matching the first moments.

Note: the Gaussian equivalence has been rigorously proven in the
random features case u ∼ N (0, Ip) v = σ (Fu) in [3, 4].

Adversarial Generative Network (GAN) data
In this section, the input x = G(z) is drawn from a GAN trained on a
data set of interest. Labels are generated from a teacher model trained
on the real data set. This generative process allow us to sample and
estimate the covariances required in Theorem 1.

As an example, we have trained a dcGAN to generate CIFAR10-like
images, and have trained a fully-connected two-layer teacher network
to assign labels for a binary animal vs. not animal classification task
on CIFAR10. The student features were obtained by training a fully
connected three-layer neural network on 30k samples from the generative
data set with the square loss. Logistic regression is then performed on
the features with vanishing λ → 0+, and the performance is shown for
the feature map learned at different stages of training.
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Real data
Next, we investigate whether our model can capture the learning curves of
real data sets {xµ, yµ}ntot

µ=1. Indeed, if the teacher weights θ0 and features
uµ = ϕt(xµ) generating the labels were known, we could estimate the
covariances for the student features of interest v = ϕs(x) empirically:

Ψ =
ntot∑
µ=1

uµuµ>

ntot
, Φ =

ntot∑
µ=1

uµvµ>

ntot
, Ω =

ntot∑
µ=1

vµvµ>

ntot
. (15)

In principle, many teachers (θ0,u) interpolate the data, and it is not
clear how to choose one. With one exception: linear teachers
yµ = θ>0 uµ.
Theorem 2. For any teacher feature map ϕt, and for any θ0 that
interpolates the data so that yµ = θ>0 uµ ∀µ, the asymptotic predictions
of model (1) are equivalent. Indeed, the teacher only appear through
quantities which can be directly expressed in terms of the labels:

ρ = 1
nrot

nrot∑
µ=1

(yµ)2 , Φ>θ0 = 1
nrot

nrot∑
µ=1

yµvµ . (16)

Figure 1: Test and training mean-squared errors as a function of the number of samples
n for ridge regression on the MNIST data set, with regularisation λ = 10−2. We show
the performance with no feature map (blue), random feature map with σ = erf &
Gaussian projection (orange), the scattering transform with parameters J = 3, L = 8
(green), and of the limiting kernel of the random map (red).

Figure 2: Test and training mean-squared errors as a function of the number of samples
n for ridge regression on the Fashion-MNIST data set, with vanishing regularisation
λ = 10−5. In this plot, the student feature map ϕs is a 3-layer fully-connected neural
network with d = 2352 hidden neurons trained on the full data set with the square loss.
Different curves correspond to the feature map obtained at different stages of training.

Conclusion

We have shown that the training and generalisation performances of
generalised linear models on a broad class of realistic features can
be captured by a Gaussian covariate model, for which we provide
rigorous and exact characerisation in the high-dimensional limit.
Perspectives:

• Applications to practical Machine Learning problems.
• Universality beyond linear teachers?
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