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exactly solvable models

Exactly solvable models are high dimensional, random design machine learning models
whose properties (generalization error, information theoretic limits, ...) can be entirely
described by a set of low dimensional parameters.

A typical formulation is the teacher-student generalized linear model :

observe the " teacher’ generative model

y = fi(Awy) € RY, w, € R, A € RY*?iid. N(0,1/N)
learn with the " student” model
w* € argmin L (y, Aw) + r(w) 1)
weRd

o L, r are given loss and penalty functions

e N,d — oo with fixed ratio

Goal : statistical properties/distribution of w*

Approximate Message Passing (AMP) iterations

Algorithms inspired by statistical physics involving random matrices, non-linearities, and a
specific correction term. The distribution of AMP iterates can be exactly characterized by a
low dimensional recursion at each time step, the state evolution (SE) equations. Powerful
solver/proof method for exactly solvable models.

Examples of problems solved with an AMP

Spiked matrix recovery:
AMP proposed in, e.g., [RF12], rigorous SE [JM13]. Recover vy € R" from:

where the noise matrix W € GOE(N).

Generalized linear modelling (problem (1)):
AMP in, e.g., [Ran11], rigorous SE [BM11], [JM13]. Includes the LASSO, logistic regression,
etc ...

Multilayer generalized linear estimation:
AMP in [MKMZ17], heuristic SE. Recover x, € RM from

Y= dr(Ardrr (Aroa(-- - $1(A1x)))

where, for each layer I, € RV XN has id.

N /Ny = 6, € [0, 1].

the matrix A, N(O, Ni) with
)

Spiked matrix with generative prior:
AMP in [ALM*20], heuristic SE. Same notations as before, recover v, from

A
— vovg + W
d
where v, has the generative prior:

Vo = ¢L(ALdr 1 (AL—I(-“¢1(AIXO)))

What's the problem ?

o stat. phys. intuition not grounded in machine learning

@ SE proofs are tedious and done on a case by case basis

Contributions

o unifying framework for AMP iterations in the form of an oriented graph
@ prove SE equations for any graph-based AMP
@ prove recent heuristic SE equations, extend the reach of SE proofs

o offer new design possibilities for AMP iterations

Graph-based AMP iterations

Consider a symmetric finite directed graph G = (V, ?) We associate an AMP iteration
supported by the graph G as follows.

@ The variables x‘? of the AMP iteration are indexed by the iteration number t € N and

the oriented edges of the graph < e ?

t w
x, € R"

xig € R™

o All variables associated to edges @ = (v, w) with end-node w € V have a same
dimension n,, € Nso, i.e., X € R™. We define N = Y n, the sum of the

dimensions of all variables.

@ Matrices of the AMP iteration are also indexed by the edges of the graph, and all have
iid. N(0, 1/N) elements. If @ = (v, w) € E, Az € R™*™. These matrices must
satisfy the symmetry condition A(, ) = A(, ;. In particular, this implies that matrices

A(.,) € R™*™ associated to loops (v, v) € E must be symmetric.

o Non-linearities of the AMP iteration are also indexed by the edges of the graph (and
possibly by the iteration number t). If t > 0 and & = (v, w) € E,

oy (%), 2 ) is a function of all the variables of the edges whose end-node is
the starting-node v of &, as denoted by the condition @’ — @. Itis a function from

(R™)%EY to R™.

Consider a given an arbitrary initial condition xu_é, € R™ for all oriented edges e e ? of
the graph. We define recursively the AMP iterates (Xr?)tzu,?c?' by the iteration: for all

t>0,2 ¢ E,

= Apml — bLmit, )
fo_ gt + 3
my =fe <(X—e~)?, ?,H?) s (3)
where bis, is the so-called Onsager correction term
1 OfL
s t
b = — Tr x5 ) o, ER. (4)
o=y T o (Ke)zee)
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The above partial derivative makes sense as *& — "€, thus x« is a variable of f . Note

that in (2), the Onsager term multiplies the vector m'=" indexed by the symmetric edge ‘&

of 2.

Main theorem : state evolution (SE)

Notation: For any matrix & € S and a random matrix Z € RNX9 we write

Z ~ N(0, k ® ly) if Z is a matrix with jointly Gaussian entries such that for any

1< i,j < q E[Z/(Z)7] = rijly, where Z', Z denote the i-th and j-th columns of Z.
Forallv € V, n, — oo and n, /N converges to a well-defined limit 6, € [0, 1]. We
denote by n — oo the limit under this scaling.

D

n (State evolut rates)

The state evolution iterates are d of one infinit:

I array (%), o0 of
real values for each edge < e ? These arrays are generated as follows. Define the first
state evolution iterates

2

N1 X (T I P

Recursively, once () 2 are defined for some t > 1, define independently for

sr<t, @ e
each @ € E, Z% =x% and (Z%, ..., Z%) a centered Gaussian random vector of
covariance (n'_j),,sS, ® Iy, . We then define new state evolution iterates

K/gl,s+l _

ngl,cﬂ

= lim, %E (7 (@ )vmene) 5 (F)2zz))]

for all s€{1,4.4,t},_e’€?,

Theorem (Informal)

Under mild regularity
function ® : RNV — R,

for any of ly (in n) pseudo-Lipschitz

*® ((x%)OSsSt,?e?) =~E [0 ((22?)0555:.?6?)]

: matri |
random (Gaussian) matrices.

d variables, structured/correlated and spatially coupled

Recovering existing AMP/ rigorous SE equations

Spiked matrix recovery (left) and generalized linear modelling (right)
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Proving heuristic SE equations

Multilayer generalized linear estimation:

o AT < Ae
X A; F:‘ X A;L Fg
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Spiked matrix with generative prior:
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A recent application of SE equations

Classifying a high-dimensional Gaussian mixture [LSG*21]

Generative model (" teacher")

K
xRy e RN P(xy) = Dy N (xl s Ti) s
=t

" Student”

ANS nglli?xK L(Y, XW) + r(W) (5)

Learn K separating hyperplanes, i.e. a matrix W € RI*K
How to obtain the statistical properties of W* ?

@ design an AMP s.t. its fixed point matches the optimality condition of (5)
o find a converging trajectory (convexity helps)

o statistical properties are then given by the fixed point of the SE equations (see main
theorem of [LSG'21])
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Figure: Training and generalization error for ridge penalized logistic regression on K Gaussian clusters,
¥, = Ald. (Left) Sample complexity (Right) Regularization

Future directions

@ many more graphs : loops, highly connected nodes, etc ...
@ how to systematically design an AMP for a given problem
@ universality and finite size rates

@ other sources of randomness : randomly initialized algorithms, ...
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