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Motivation : exactly solvable models

Exactly solvable models are high dimensional, random design machine learning models
whose properties (generalization error, information theoretic limits, ...) can be entirely
described by a set of low dimensional parameters.

A typical formulation is the teacher-student generalized linear model :

observe the ”teacher” generative model

y = f0(Aw0) ∈ RN
, w0 ∈ Rd

, A ∈ RN×d i.i.d. N(0, 1/N)

learn with the ”student” model

w? ∈ argmin
w∈Rd

L (y, Aw) + r(w) (1)

L, r are given loss and penalty functions

N, d → ∞ with fixed ratio

Goal : statistical properties/distribution of w?

Approximate Message Passing (AMP) iterations

Algorithms inspired by statistical physics involving random matrices, non-linearities, and a
specific correction term. The distribution of AMP iterates can be exactly characterized by a
low dimensional recursion at each time step, the state evolution (SE) equations. Powerful
solver/proof method for exactly solvable models.

Examples of problems solved with an AMP

Spiked matrix recovery:
AMP proposed in, e.g., [RF12], rigorous SE [JM13]. Recover v0 ∈ RN from:

Y =

√
λ

d
v0v>

0
+ W

where the noise matrix W ∈ GOE(N).

Generalized linear modelling (problem (1)):
AMP in, e.g., [Ran11], rigorous SE [BM11], [JM13]. Includes the LASSO, logistic regression,
etc . . .

Multilayer generalized linear estimation:
AMP in [MKMZ17], heuristic SE. Recover x0 ∈ RN1 from

y = φL(ALφL−1

(
AL−1(...φ1(A1x0))

)
where, for each layer l , the matrix Al ∈ RNl+1×Nl has i.i.d. N(0, 1

Nl

) with

Nl+1/Nl = δl ∈ [0, 1].

Spiked matrix with generative prior:
AMP in [ALM+20], heuristic SE. Same notations as before, recover v0 from

Y =

√
λ

d
v0v>

0
+ W

where v0 has the generative prior:

v0 = φL(ALφL−1

(
AL−1(...φ1(A1x0))

)
What’s the problem ?

stat. phys. intuition not grounded in machine learning

SE proofs are tedious and done on a case by case basis

Contributions

unifying framework for AMP iterations in the form of an oriented graph

prove SE equations for any graph-based AMP

prove recent heuristic SE equations, extend the reach of SE proofs

offer new design possibilities for AMP iterations

Graph-based AMP iterations

Consider a symmetric finite directed graph G = (V ,
−→
E ). We associate an AMP iteration

supported by the graph G as follows.

The variables xt−→e of the AMP iteration are indexed by the iteration number t ∈ N and

the oriented edges of the graph −→e ∈
−→
E .

v w
−→e

xt−→e ∈ Rnw

←−e
xt←−e ∈ Rnv

All variables associated to edges −→e = (v, w) with end-node w ∈ V have a same
dimension nw ∈ N>0 , i.e., xt−→e ∈ Rnw . We define N =

∑
(v,w)∈

−→
E

nw the sum of the

dimensions of all variables.

Matrices of the AMP iteration are also indexed by the edges of the graph, and all have

i.i.d. N(0, 1/N) elements. If −→e = (v, w) ∈
−→
E , A−→e ∈ Rnw×nv . These matrices must

satisfy the symmetry condition A(v,w) = A>
(w,v)

. In particular, this implies that matrices

A(v,v) ∈ Rnv×nv associated to loops (v, v) ∈
−→
E must be symmetric.

v w

A−→e
−→e

A←−e = A>−→e

←−e

Non-linearities of the AMP iteration are also indexed by the edges of the graph (and

possibly by the iteration number t). If t ≥ 0 and −→e = (v, w) ∈
−→
E ,

f t
(v,w)

((
xt−→e ′

)
−→e ′ :−→e ′→−→e

)
is a function of all the variables of the edges whose end-node is

the starting-node v of −→e , as denoted by the condition −→e ′ → −→e . It is a function from
(Rnv )deg v to Rnv .

v w
−→e

f t−→e

←−e
xt←−e

−→e ′

xt−→e ′

Consider a given an arbitrary initial condition x0
−→e ∈ Rnw for all oriented edges −→e ∈

−→
E of

the graph. We define recursively the AMP iterates
(
xt−→e
)
t≥0,−→e ∈

−→
E

, by the iteration: for all

t ≥ 0,−→e ∈
−→
E ,

xt+1
−→e = A−→e mt

−→e − bt
−→e mt−1
←−e , (2)

mt
−→e = f t−→e

((
xt−→e ′

)
−→e ′ :−→e ′→−→e

)
, (3)

where bt
−→e is the so-called Onsager correction term

bt
−→e =

1

N
Tr
∂f t−→e

∂x←−e

((
xt−→e ′

)
−→e ′ :−→e ′→−→e

)
∈ R . (4)

The above partial derivative makes sense as ←−e → −→e , thus x←−e is a variable of f t−→e . Note

that in (2), the Onsager term multiplies the vector mt−1
←−e indexed by the symmetric edge←−e

of −→e .

Main theorem : state evolution (SE)

Notation: For any matrix κ ∈ S+
q

and a random matrix Z ∈ RN×q we write

Z ∼ N(0,κ ⊗ IN ) if Z is a matrix with jointly Gaussian entries such that for any
1 6 i, j 6 q, E[Zi (Zj )> ] = κi,j IN , where Zi , Zj denote the i-th and j-th columns of Z.
For all v ∈ V , nv → ∞ and nv/N converges to a well-defined limit δv ∈ [0, 1]. We
denote by n → ∞ the limit under this scaling.

Definition (State evolution iterates)

The state evolution iterates are composed of one infinite-dimensional array (κs,r
−→e )r,s>0 of

real values for each edge −→e ∈
−→
E . These arrays are generated as follows. Define the first

state evolution iterates

κ
1,1
−→e = lim

n→∞

1

N

∥∥∥f 0
−→e

((
x0
−→e ′

)
−→e ′ :−→e ′→−→e

)∥∥∥2

2
, −→e ∈

−→
E .

Recursively, once (κs,r
−→e )

s,r≤t,−→e ∈
−→
E

are defined for some t ≥ 1, define independently for

each −→e ∈
−→
E , Z0

−→e = x0
−→e and (Z1

−→e , . . . , Zt
−→e ) a centered Gaussian random vector of

covariance (κr,s
−→e )r,s≤t ⊗ Inw . We then define new state evolution iterates

κ
t+1,s+1
−→e = κ

s+1,t+1
−→e

= lim
n→∞

1

N
E
[〈

f s−→e

((
Zs
−→e ′
)
−→e ′ :−→e ′→−→e

)
, f t−→e

((
Zt
−→e ′
)
−→e ′ :−→e ′→−→e

)〉]
for all s ∈ {1, . . . , t} ,−→e ∈

−→
E .

Theorem (Informal)

Under mild regularity assumptions, for any sequence of uniformly (in n) pseudo-Lipschitz
function Φ : R(t+1)N → R,

Φ
((

xs−→e
)

0≤s≤t,−→e ∈
−→
E

)
P
' E

[
Φ
((

Zs
−→e

)
0≤s≤t,−→e ∈

−→
E

)]
Included extensions : matrix-valued variables, structured/correlated and spatially coupled
random (Gaussian) matrices.

Recovering existing AMP/ rigorous SE equations

Spiked matrix recovery (left) and generalized linear modelling (right)

v

f t−→e

A−→e −→e

xt−→e
v w

f t−→e
A−→e
−→e

xt−→e

f t←−eA>−→e

←−e
xt←−e

Proving heuristic SE equations

Multilayer generalized linear estimation:

v0 v1 v2 · · · vl

f t−→e1

A−→e1

−→e1

xt−→e1

f t←−e1A>−→e1

←−e1

xt←−e1

f t−→e2

A−→e2

−→e2

xt−→e2

f t←−e2A>−→e2

←−e2

xt←−e2

Spiked matrix with generative prior:

v0 v1 v2 · · · vl

f t−→e0

A−→e0
−→e0

xt−→e0

f t−→e1

A−→e1

−→e1

xt−→e1

f t←−e1A>−→e1

←−e1

xt←−e1

f t−→e2

A−→e2

−→e2

xt−→e2

f t←−e2A>−→e2

←−e2

xt←−e2

A recent application of SE equations

Classifying a high-dimensional Gaussian mixture [LSG+21]

Generative model (”teacher”)

x ∈ Rd
, y ∈ RK P(x, y) =

K∑
k=1

ykρkN (x|µk , Σk ) ,

”Student”

W? ∈ min
W∈Rd×K

L (Y, XW) + r(W) (5)

Learn K separating hyperplanes, i.e. a matrix W ∈ Rd×K

How to obtain the statistical properties of W? ?

design an AMP s.t. its fixed point matches the optimality condition of (5)

find a converging trajectory (convexity helps)

statistical properties are then given by the fixed point of the SE equations (see main
theorem of [LSG+21])
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Figure: Training and generalization error for ridge penalized logistic regression on K Gaussian clusters,
Σk = ∆Id . (Left) Sample complexity (Right) Regularization

Future directions

many more graphs : loops, highly connected nodes, etc . . .

how to systematically design an AMP for a given problem

universality and finite size rates

other sources of randomness : randomly initialized algorithms, ...
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