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Introduction



Machine learning : black box magic

Learning from data to predict, classify, compute ... Recent success

(∼ 2000−ongoing)

Deep learning revolution (2018 Turing Price)

Practical success, limited theoretical understanding

Figure 1: Deep network Figure 2: Object recognition
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Opening the black box

Go back to a single neuron : the perceptron (Rosenblatt, 1958)

Figure 3: A single neuron

Takes input vector x ∈ RN and generates

y = f (
N∑
i=1

wixi )
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Statistical physics of learning

Perceptron extensively studied in statistical physics since the 80’s

A few names : H. Sompolinsky (physics, neuroscience), M. Opper

(physics computer science), E.Gardner & B.Derrida (physics)
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Introduction

Introduction to supervised learning



Supervised learning : learning from labeled examples

• Input space A (ex. RN)

• Output space Y (ex. {−1, 1} for classification, R for regression)

• Training set SM = (xi , yi )i=1,...,M of (input,output) pairs.

Goal is to estimate a function h : A → Y to predict outputs of

future inputs

Figure 4: Classification Figure 5: Linear regression
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Example : classification

Task: recognize if image is a dog or a cat

A = set of images (pixels in RN)

Y = {cat,dog} = {-1,1}
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Example : classification

Task: recognize if image is a dog or a cat

A = set of images (pixels in RN)

Y = {cat,dog} = {-1,1}
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Empirical risk minimization (ERM)

Choose a form for h(a) on a functional space H, and choose a loss

function L to quantify the error made on a given prediction.

Goal

h∗ ∈ arg min
H

E(L(h(a), y) (1)

Approximate with empirical risk on a given training set:

1

M

M∑
i=1

L(h(ai ), yi ) (2)

Add regularisation to prevent overfitting (ML version of constraints):

arg min
H

1

M

M∑
i=1

L(h(ai ), yi ) + λ‖h‖H (3)
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Example : linear regression

Take linear model and square loss. x parameter vector.

h(a) = xTa , L(h(ai ), yi ) = ‖h(ai )− yi‖2
2

Here H is just the set of vectors θ ∈ RN , choose any classical Euclidian

norm for regularization :

arg min
RN

1

M

M∑
i=1

‖xTai − yi‖2
2 + λ‖x‖1,2,... (4)

Simplest is `2, Ridge regression:

θ∗ = (ATA + λI)−1ATy (5)
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Probabilistic formulation

Consider a Bayesian approach :

P(x) prior distribution

P(y|A, x) likelihood distribution

P(x|y) posterior probability distribution.

From Bayes law

P(x|y) =
P(y|A, x)P(x)

P(y)
∝ e log P(y|A,x)+log P(x) (6)

Maximum a posteriori estimation

x∗ ∈ arg max {logP(y|A, x) + logP(x)} (7)

Equivalent to ERM with loss − logP(y|A, x) and regularization − log p(x)
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Statistical physics approach



Statistical physics formulation

y = Ax0 + w (8)

y ∈ RM , A ∈ RM×N , x0 ∈ RN ∼ p(x0)

w ∈ Rm ∼ N (0,∆0) is a Gaussian noise.

We know y and would like to recover x0.

α = M
N gives the ratio measurements/unknowns.

In this set up, the likelihood is

P(y|A, x) =
1

√
2π∆0

M
e−

(y−Ax)2

2∆0 =
M∏
µ=1

1√
2π∆

e−
(yµ−

∑N
i=1 Aµi xi )2

2∆0 . (9)
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The posterior distribution is

P(x|y) =
1

Z(y)
e
∑N

i=1 log P(xi )− 1
2∆0

∑M
µ=1(yµ−

∑N
i=1 Aµixi )

2

(10)

∝ e−βH(x) (11)

1
2∆0

plays the role of the inverse temperature β, Aµi is a disordered

interaction.

→ N interacting particles (xi ) in a long range mean-field potential.

Disordered systems and spin glass theory!

Mézard, Parisi, Virasoro: Spin-glass theory and beyond 1986

Mézard, Montanari: Information, physics and computation 2009
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From the Hamiltonian

H(x) = −
N∑
i=1

log[p(xi )] +
M∑
µ=1

(yµ −
∑N

i=1 Aµixi )
2

2∆0
. (12)

we can define interesting quantities, such 1
N logZ the free energy.

We focus on the thermodynamic limit M,N →∞ with α = M
N fixed.

In some cases, the free energy can be computed using

the statistical physics replica method.

13



Statistical physics approach

The replica method



Crash course in replica method

We are interested in EA,x0,w(logZ). We will use the replica trick:

lim
N→∞

1

N
EA,x0,w(logZ) = lim

N→∞

1

N
lim
r→0

EA,x0,w(Z r )− 1

r
. (13)

To compute Z r , we introduce r copies of the system that we call replicas

and denote with subscript a ∈ {1, ..., r}.

EA,x0,w(Z r ) =

∫ N∏
i=1

r∏
a=1

dxai p(xai )

M∏
µ=1

EA,x0,w
1√

2π∆0

e−
1

2∆0

∑r
a=1(

∑N
i=1 Aµix0,i+wµ−

∑N
i=1 Aµix

a
i )2

. (14)
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Matrix averaging

A difficult term is

EF ,w

[
exp

{
− 1

2∆0

r∑
a=1

[
F (x0 − xa) + w

]T [
F (x0 − xa) + w

]}]
. (15)

• If A is Gaussian i.i.d., everything is Gaussian → straightforward

averaging [Krzakala et. al. 2012]

• A is rotationally invariant if its singular value decomposition

A = UDVT includes orthogonal matrices U and V that are

uniformly sampled from the orthogonal ensemble.

If A is rotationally invariant, there is also a way to perform this

average [Kabashima et. al. 2014]
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Order parameters

In both cases the integral can be written over the following order

parameters:

ma =
1

N

N∑
i=1

xai x0,i a = 1, 2, ...r (16)

Qn =
1

N

N∑
i=1

(xai )2 a = 1, 2, ...r (17)

qab =
1

N

N∑
i=1

xai x
b
i a = 1, 2, ...r . (18)

They describe physical quantities: norms and overlaps between vectors.

Doing a change of variables, we have an integral on those parameters +

a set of conjugate parameters, instead of the xa.
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Replica symmetric ansatz

We need to assume an ansatz on order parameters. The easiest one is

replica symmetry :

we assume all replicas are ”equivalent” and

qab = q ∀a 6= b

ma = m and Qa = Q ∀a.

The integral decouples on replicas and becomes

EA,x0,w(Z r ) =

∫
dQ dQ̂ dq dq̂ dm dm̂ erNΦ(Q,q,m,Q̂,q̂,m̂). (19)
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Recall

lim
N→∞

1

N
EA,x0,w(logZ) = lim

N→∞

1

N
lim
r→0

EA,x0,w(Z r )− 1

r
. (20)

We assume that we can take the limit N →∞ first. Using the

saddle-point method, the integral concentrates around extremal value of

Φ, that we call Φ∗.

lim
N→∞

EA,x0,w(Z r ) = erNΦ∗ . (21)

Φ∗(Q∗, q∗,m∗, Q̂∗, q̂∗, m̂∗) is the free energy of the system. The

saddle-point is described by a set of 6 equations.
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Penalized linear regression



Position of the problem

Penalized linear regression

We are interested in the estimator

x∗ = arg min
x∈RN

{
1

2
‖y − Ax‖2

2 + f (x)

}
(22)

where y = Ax0 + w

w i.i.d ∼ N (0,∆0)

x0 ∼ px0 (23)

A ∈ RM×N rotationally invariant (A = UDVT where U,V Haar

distributed)

f is a convex function

Examples : Ridge, Lasso, Logarithmic Barrier, ...

We want to characterize the mean squared error with respect to the

teacher vector :

MSE = E
[
‖x0 − x∗‖2

2

]
. (24)
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Simulated result

We can estimate x∗ = arg minx∈Rn

{
1
2‖y − Ax‖2

2 + f (x)
}

using a convex

optimization algorithm. For instance we take f (x) = λ‖x‖1 and compute

the mean squared error, for different values of λ and different types of

matrices A of ”small” size (200*100).
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Penalized linear regression

Heuristic result



Replica knows it all!

We can analyze this problem with the replica method, using a ”prior

distribution”

p(x) ∝ e−f (x)/∆0 (25)

inside

EA,x0,w(Z r ) =

∫ N∏
i=1

r∏
a=1

dxai p(xai )

M∏
µ=1

EA,x0,w
1√

2π∆0

e−
1

2∆0

∑r
a=1(

∑N
i=1 Aµix0,i+wµ−

∑N
i=1 Aµix

a
i )2

. (26)

The obtained free energy will describe the properties of the estimator x∗.
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Notice that the mean squared error

E
[
‖x0 − x∗‖2

2

]
= E[‖x0‖2

2] + E[‖x∗‖2
2]− 2E[xO · x∗] (27)

= E[‖x0‖2
2] + q∗ − 2m∗ (28)

can be written in terms of the previously defined order parameters q∗,

m∗, and E[‖x0‖2
2].

Taking the replica saddle-point equations on parameters

Q∗, q∗,m∗, Q̂∗, q̂∗, m̂∗ → we reduce them to only two parameters E∗,V ∗.

The replica saddle-point equations describe properties of the estimator

x∗, by giving equations about its mean squared error, and variance.
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Replica result

The average mean squared error MSE = 1
N
E
[
‖x0 − x∗‖2

2

]
is given by the fixed

point E∗ of the equations:

V ∗ = E
[

1

RC(−V ∗)
Prox′f /RC(−V∗)

(
x0 +

z

RC (−V ∗)

√
(E∗ −∆0V ∗)R′C (−V ∗) + ∆0RC (−V ∗)

)]
(29a)

E∗ = E
[{

Proxf /RC(−V∗)

(
x0 +

z

RC (−V ∗)

√
(E∗ −∆0V ∗)R′C (−V ∗) + ∆0RC (−V ∗)

)
− x0

}2]
,

(29b)

where C = ATA, RC is the R-transform with respect to the spectral

distribution of ATA, and expectations are over z ∼ N (0, 1) and x0 ∼ px0 . Prox

is the proximal operator defined as:

∀γ ∈ R+, x , y ∈ R Proxγf (y) ≡ arg min
x

{
f (x) +

1

2γ
(x − y)2

}
. (30)
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Replica result vs Simulation

From the replica result, we can numerically solve the equations on E∗,V ∗

in the case of f (x) = λ‖x‖1.
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However, the replica result is non-rigorous: several steps are not justified!

Inverting the limits, taking r → 0...

The replica result is rigorously proven in some cases, when A is a

Gaussian i.i.d. matrix [Guerra, Talagrand, Barbier]

We would now like to prove the previous replica result, for A rotationally

invariant, with a convex penalty function!
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Rigorous mathematical

statement



Proof recipe

We will need several ingredients :

• An algorithm that tries to find the estimator x∗, knowing A, y and f .

• An analytic understanding of this algorithm, that gives us the mean

squared error of the estimator (no easy task!)

• A converging sequence of the algorithm.

Then the estimator x∗ would be described by the properties of the fixed

point of the algorithm.
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Vector Approximate Message Passing...

We will use message-passing algorithms: a class of algorithms which have

been developed independently in machine learning, and statistical physics!

One of them, Vector approximate message-passing (VAMP) [Rangan et.

al. 2019], does exactly what we need, for rotationally invariant matrices.

Choose initial A10 and B10

x̂1k = Prox 1
A1k

f

(
B1k

A1k

)
x̂2k = (ATA + A2k Id)−1(AT y + B2k)

V1k =
〈Prox′ 1

A1k
f
〉

A1k
V2k =

1

N
Tr
[
(ATA + A2k Id)−1

]
A2k =

1

V1k
− A1k A1,k+1 =

1

V2k
− A2k

B2k =
x̂1k

V1k
− B1k B1,k+1 =

x̂t
2

V2k
− B2k
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and its State evolution!

This algorithm is analytically tractable → we have another set of

equations, that follow it step-by-step and give:

• the statistical distribution of the estimators at each iteration

• the mean squared-error between the estimators and x0.

They are called the state evolution equations, and are exact in the

asymptotic limit. At the fixed point, the state evolution equations are

exactly the same as the replica equations.
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Rigorous mathematical

statement

Interlude on convex optimization



Interlude on proximal operators : definition

Projection on a set C

PC(y) = arg min
x

{
IC(x) + ‖x− y‖2

2

}
Replace indicator with arbitrary function

∀γ ∈ R+, x, y ∈ X Proxγf (y) = arg min
x

{
f (x) +

1

2γ
||x− y||22

}

Example : shrinkage (`2), soft-thresholding (`1), hard-thresholding (`0)

Figure 6: Hard (left) and soft (right) thresholding
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Interlude on proximal operators : interpretation

Projection on level sets of f (left)

Moreau envelope (right) : smoothing/regularization of objective

Mλf (y) = inf
x∈X

(f (x) +
1

2λ
‖x− y‖2

2)

Gradient step on Moreau envelope :

Proxγf (x) = x− λ∇Mλf (x)
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Interlude on proximal operators : properties

Proximal enjoy nice properties :

firm nonexp. 〈x− y,Proxf (x)− Proxf (y)〉 > ||Proxf (x)− Proxf (y)||2

Fixed point Proxf (x) = x ⇐⇒ ∂f (x) = 0

Main idea of proximal algorithms : iteratively apply prox !

Popular algorithm : Douglas-Rachford splitting

arg min
x

f (x) + g(x)

zk+1 = (1− ρ)zk + ρ(2Proxγf − Id) ◦ (2Proxγg − Id)(zk)

x∗ = Proxγf (z∗)

Very stable, provably convergent, easy to implement, ...

(ρ is a damping parameter)
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VAMP vs Douglas-Rachford

Choose initial A10 and B10

x̂1k = Prox 1
A1k

f

(
B1k

A1k

)
x̂2k = (ATA + A2k Id)−1(AT y + B2k)

V1k =
〈Prox′ 1

A1k
f 〉

A1k
V2k =

1

N
Tr
[
(ATA + A2k Id)−1

]
A2k =

1

V1k
− A1k A1,k+1 =

1

V2k
− A2k

B2k =
x̂1k

V1k
− B1k B1,k+1 =

x̂t2
V2k
− B2k
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VAMP vs Douglas-Rachford

Choose initial B10, A1,A2,V from SE fixed point

x̂1k = Prox 1
A1

f

(
B1k

A1

)
x̂2k = (ATA + A2Id)−1(AT y + B2k)

B2k =
x̂1k

V1
− B1k B1,k+1 =

x̂t2
V2
− B2k

Not intended to be used in practice ! For the sake of the proof.

Codable only in teacher student setup
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VAMP vs Douglas-Rachford

Remember Douglas-Rachford (take ρ = 1) :

zk+1 = (2Proxγf − Id) ◦ (2Proxγg − Id)(zk)

x∗ = Proxγf (z∗)

VAMP with fixed variances and parameters :

Bt+1
2 =

(
1

V
Prox 1

A1
f (

.

A1
)− Id

)
◦
(

1

V
Prox 1

2A2
||y−Ax||22 (

.

A2
)− Id

)
(Bt

2)

VAMP is Douglas-Rachford with adaptative parameters

Actually A1,A2 are adapted to the curvature of f and g .
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Rigorous mathematical

statement

Last ingredient



An Important Remark

Now that we have

• the algorithm VAMP that tries to find x∗

• exact equations that describe the mean squared error of VAMP’s

fixed point estimator

Are we done??

Figure 7: I NEED A CONVERGING TRAJECTORY
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Convergence analysis of VAMP

Generate a sequence with the prescription :

Bt+1
2 = O1 ◦ O2(Bt

2)

where O1 =
1

V
Prox 1

A1
f (

.

A1
)− Id

and O2 =

(
1

V
Prox 1

2A2
||y−Ax||22 (

.

A2
)− Id

)
Find upper bound on the Lipschitz constant of O1 ◦ O2 → OK

Can we make it a contraction ?
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Forcing the convergence

Enforcing strong convexity and smoothness :

x̂ = arg min
x∈RN

1

2
‖y − Ax‖2

2 + f (x) +
λ2

2
‖x‖2

2

Possibility to enforce convergence for large enough λ2

• Proof complete for any λ2 large enough.

• Generalization to any λ2 with analytical continuation is valid.

• Non-differentiable functions can be approximated.

37



Extension of the result



Generalized linear estimation

• Keep linear model :

f (a) = xTa

• Change the square loss:

L(x, y)

Logistic regression with `1 penalty

x̂(γ,D) = argminx∈RN

[
−

M∑
µ=1

log
1

1 + e−yµaT
µx

+ γ

N∑
i=1

|xi |

]

Max-margin classifier with `1 penalty

x̂(γ,D) = argminx∈RN

[
−

M∑
µ=1

max(0, 1− yµaT
µ x) + γ

N∑
i=1

|xi |

]
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Extension to the GLM : Generalized-VAMP

Corresponding extension of VAMP → Generalized-VAMP

Figure 8: Slightly thicker stuff...

Same proof structure. Convergence analysis requires more sophisticated

tools : Lyapunov arguments from dynamical systems.
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Conclusion

We proved a statistical physics heuristic result (replica formula) for

penalized linear regression, with rotationally invariant matrices.

• This could be done thanks to message-passing algorithms,

well-understood in statistical physics, which makes them great

theoretical tools.

• We used concepts from convex optimization, random matrix theory..

→ Exciting problems at the crossroads of several fields! Such ”simple”

models are the building blocks to understand more complex algorithms.
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Thank you :)
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