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Introduction



Learning from data to predict, classify, compute ... Recent success
(~ 2000—ongoing)

Deep learning revolution (2018 Turing Price)

Practical success, limited theoretical understanding

Deep Neural Network

Input Layer

edges. ‘combinations of edges  object models

Figure 1: Deep network Figure 2: Object recognition



Go back to a single neuron : the perceptron (Rosenblatt, 1958)

Figure 3: A single neuron

Takes input vector x € RN and generates

N
y =f(>_ wix)
=il



Perceptron extensively studied in statistical physics since the 80’s

Optimal storage properties of neural network models
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Introduction

Introduction to supervised learning



e Input space A (ex. RV)
e Output space Y (ex. {—1,1} for classification, R for regression)
e Training set Sy = (X}, yi)i=1,...,.m of (input,output) pairs.

Goal is to estimate a function h: 4 — ) to predict outputs of
future inputs

Figure 4: Classification Figure 5: Linear regression



Task: recognize if image is a dog or a cat
A = set of images (pixels in RV)
Y = {cat,dog} = {-1,1}




Task: recognize if image is a dog or a cat
A = set of images (pixels in RV)
Y = {cat,dog} = {-1,1}




Choose a form for h(a) on a functional space H, and choose a loss
function £ to quantify the error made on a given prediction.

Goal
h* € argmin E(L(h(a), y) (1)
H
Approximate with empirical risk on a given training set:
1M
5 3 L(h(i), ) e
i=1

Add regularisation to prevent overfitting (ML version of constraints):

M
o1
argHmm o Z L(h(ai),yi) + Allhlla (3)
i=1



Take linear model and square loss. x parameter vector.
h(@)=xTa , L(h(a;),y:) = ||h(a;) — yill3

Here # is just the set of vectors # € RV, choose any classical Euclidian
norm for regularization :

M
.1 T 2
srgin g 31" =yl + .. *)

Simplest is ¢, Ridge regression:

0 = (ATA+A)IATy (5)



Consider a Bayesian approach :

P(x) prior distribution

P(y|A, x) likelihood distribution

P(x|y) posterior probability distribution.

From Bayes law

P(y|A,x)P(x)

P(x|y) = 6% elog P(y|A,x)+log P(x) 6
(xly) = =g (6)

Maximum a posteriori estimation
x* € argmax {log P(y|A, x) + log P(x)} (7)

Equivalent to ERM with loss — log P(y|A, x) and regularization — log p(x)
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Statistical physics approach



y=Axo+w (8)

y e RM A € RN x5 € RN ~ p(xq)
w € R” ~ N(0,Ap) is a Gaussian noise.

We know y and would like to recover xg.
@ = % gives the ratio measurements/unknowns.
In this set up, the likelihood is

1 oA M M
PlyA) = ——ge B [ L T ()
27TAO n=1 2
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The posterior distribution is

1 N og P(x;)— 1 S°M SN A )2
P(x]y) = %ez,,n g P(xi) = 5a5 o1 (V=210 Auixi) (10)
x e Ak (11)

i plays the role of the inverse temperature 3, A,; is a disordered
interaction.
— N interacting particles (x;) in a long range mean-field potential.

Disordered systems and spin glass theory!
Mézard, Parisi, Virasoro: Spin-glass theory and beyond 1986
Mézard, Montanari: Information, physics and computation 2009
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From the Hamiltonian

Z log[p(x;)] + Z Z’ 1 A’“X') ) (12)

we can define interesting quantities, such % log Z the free energy.
We focus on the thermodynamic limit M, N — oo with o = % fixed.

In some cases, the free energy can be computed using
the statistical physics replica method.
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Statistical physics approach

The replica method



We are interested in IEA,XO,W(Iog Z). We will use the replica trick:

lim —Eaxw(logZ) = lim 1 i Baxow(2) — 1

N—oo N N—oo N r—0 r

(13)

To compute Z", we introduce r copies of the system that we call replicas
and denote with subscript a € {1, ..., r}.

Eaxow(Z") /Hde p(x

i=1a=1

e—ﬁ S (T Auixo,itwu =, AuiXia)z' (14)

I nsow e
e A, xo,w 27T'A0
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A difficult term is

Er .. . (15)

exp{—i [F(xo—x")—i-w]T[F(xo—xa)—i—w]}

e If A is Gaussian i.i.d., everything is Gaussian — straightforward
averaging [Krzakala et. al. 2012]

e A is rotationally invariant if its singular value decomposition
A = UDVT includes orthogonal matrices U and V that are
uniformly sampled from the orthogonal ensemble.

If A is rotationally invariant, there is also a way to perform this
average [Kabashima et. al. 2014]
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In both cases the integral can be written over the following order

parameters:

Zxxo, a=12,. (16)
(x*)? a=1,2,. (17)
x*xP a=1,2,..r. (18)

They describe physical quantities: norms and overlaps between vectors.
Doing a change of variables, we have an integral on those parameters +

a set of conjugate parameters, instead of the x°.
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We need to assume an ansatz on order parameters. The easiest one is
replica symmetry:
we assume all replicas are "equivalent” and

q*=qVa#b
m?=mand Q? = Q Va.

The integral decouples on replicas and becomes

Enxw(Z") = / dQ d@ dg dg dm drm e™N(@amQam) — (19)
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Recall

1 1. _E ry—
lim B w(log2) = lim . lim Eaxw(Z1) =1 (20)

N—oo N— oo r—0 r

We assume that we can take the limit N — oo first. Using the
saddle-point method, the integral concentrates around extremal value of
®, that we call ¢*.
lim Eaxw(Z")=e™®". (21)
N— oo

o*(Q*, q*, m* , Q. 6 , M*) is the free energy of the system. The
saddle-point is descrlbed by a set of 6 equations.
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Penalized linear regression




We are interested in the estimator

x* = argmin {1||y — Ax|j3 + f(x)} (22)
XCRN 2

where 'y = Axo+w
w iid ~N(0,Ap)
XO ~ pXo (23)

A € RM*N rotationally invariant (A = UDV " where U,V Haar
distributed)
f is a convex function

Examples : Ridge, Lasso, Logarithmic Barrier, ...
We want to characterize the mean squared error with respect to the

teacher vector :
MSE = E [||xo — x*||3]. (24)



We can estimate x* = arg min,cp. {3y — Ax||3 + f(x)} using a convex
optimization algorithm. For instance we take f(x) = A||x||; and compute
the mean squared error, for different values of A and different types of

matrices A of "small” size (200*100).

* + Gaussian i.i.d. simulation
0.014 A *  row orthogonal simulation
i
=
s 0012 A +
|
[=]
= +
— 0.010 -
n * .
. = + + + +
LW 0.008 - x
®
* ® ®
0.006 1 ook o= %

A 20



Penalized linear regression

Heuristic result



We can analyze this problem with the replica method, using a " prior

distribution”
p(x) oc e 09/ %0 (25)
inside
N r
Eanl2) = [ [TT] &tp0)

i=1a=1

M
1 ok T (2N Auio,itw = Auix?)?
HEA,XQ,W e 21 a=1 i=1 i X0,i iz i=1 i) (26)
=1 vV 27TAO

The obtained free energy will describe the properties of the estimator x*.
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Notice that the mean squared error

E [llxo — x*[13] = Elllxol13] + E[lx*[|3] — 2E[xo - x"] (27)
= E[|[xol3] + g~ — 2m" (28)

can be written in terms of the previously defined order parameters g*,
m*, and E[||xo]|3]-

Taking the replica saddle-point equations on parameters

Q*, g*, m*, Q*, §*, m* — we reduce them to only two parameters E*, V*.

The replica saddle-point equations describe properties of the estimator
x*, by giving equations about its mean squared error, and variance.

22



The average mean squared error MSE = £ E [|[xo — x*||3] is given by the fixed
point E* of the equations:

. 1 ’ z * * ’ * *
V*=E [Wproxf/p_c(iv*) <x0+ W\/(E — DoV*)RE (=V*) + DgRe (—V ))}

(29a)

E*=E [{Proxf/Rc(_v*) (xo + ﬁ\/(fs* — BoV*)RL(—V*) + BoRe (—V*)) - x0}2:| 7
(29b)

where C = ATA, Rc is the R-transform with respect to the spectral
distribution of ATA, and expectations are over z ~ N(0,1) and xo ~ px,. Prox
is the proximal operator defined as:

Vv €R" x,y €R  Prox,(y) = argmin {f(x) + %(x - y)z} . (30)
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From the replica result, we can
in the case of f(x) = A||x||;.

numerically solve the equations on

+
)
A
no1d4 Y
[ Ta'] .‘\
— Ay
n_ ‘\
s 0012 A b
| ‘.\
< \\.&
= 0.010 A ~
—le
I x
# h"‘h
W 0.008 N
e
0.006

+ Gaussian i.i.d. simulation
Gaussian i.i.d. replica result
*  row orthogonal experiment
row orthogonal replica result

s e m ==X

0.06
A

T
0.08 010

E*, V*
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However, the replica result is non-rigorous: several steps are not justified!
Inverting the limits, taking r — O...

The replica result is rigorously proven in some cases, when A is a
Gaussian i.i.d. matrix [Guerra, Talagrand, Barbier]

We would now like to prove the previous replica result, for A rotationally
invariant, with a convex penalty function!

25



Rigorous mathematical
statement
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We will need several ingredients :

50,

e An algorithm that tries to find the estimator x*, knowing A, y and f.
e An analytic understanding of this algorithm, that gives us the mean
squared error of the estimator (no easy task!)

e A converging sequence of the algorithm.

Then the estimator x* would be described by the properties of the fixed
point of the algorithm.

26



We will use message-passing algorithms: a class of algorithms which have
been developed independently in machine learning, and statistical physics!

One of them, Vector approximate message-passing (VAMP) [Rangan et.
al. 2019], does exactly what we need, for rotationally invariant matrices.

Choose initial Ao and Bio

. B . _
X1k = Prox 1 ( 1k> %o = (ATA + Agcld) (AT y + Bax)

ALk Ailk
(Prox’y ) 1
_ A1k _ = T =il
Vi = — 25— Vo = o Tr [(A A+ Ay ld) ]
A= _ A A= —— — A
2k — Vlk 1k 1,k+1 — Vzk 2k
)’ilk AE
Bu = % _B Biii—= 2 —B
2k Vlk 1k 1,k+1 V2k 2k

27



This algorithm is analytically tractable — we have another set of
equations, that follow it step-by-step and give:

e the statistical distribution of the estimators at each iteration

e the mean squared-error between the estimators and xq.

They are called the state evolution equations, and are exact in the
asymptotic limit. At the fixed point, the state evolution equations are
exactly the same as the replica equations.

28



Rigorous mathematical
statement

Interlude on convex optimization



Projection on a set C
Pe(y) = argmin {Ie(x) + [[x — y|3}

Replace indicator with arbitrary function

1
Vy € RT x,y € X Prox,r(y) = argmin {f(x) + ZHX — y||§}

Example : shrinkage (£2), soft-thresholding (¢1), hard-thresholding (¢o)

O(t, ) oA
—V2X Y
STV t R t




Projection on level sets of f (left)

Moreau envelope (right) : smoothing/regularization of objective

. 1 5
Mar(y) = inf (F() + 5lIx — yIB)
Gradient step on Moreau envelope :
Proxyr(x) = x — AVMy£(x)
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Proximal enjoy nice properties :

firm nonexp.  (x —y, Proxs(x) — Prox¢(y)) = ||Proxs(x) — Prox¢(y)||?

Fixed point Proxs(x) =x <= 0f(x) =0

Main idea of proximal algorithms : iteratively apply prox !

argxmin f(x)+ g(x)

ZK = (1 — p)z* + p(2Prox. s — Id) o (2Prox,z — Id)(z¥)

x* = Prox,¢(z")

Very stable, provably convergent, easy to implement, ...
(p is a damping parameter)
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Choose initial A9 and Bqg

B
K1k = Prox 1 ¢ (A—lk) %ok = (ATA + Agld) L (ATy + Boy)

A1k

1k
(Prox'/%ﬁ 1 . .
Vik = Tklk Vo = NTI‘ [(A A+ A2k/d) ]
A ! A A ! A
2% = o 1k Lkl = 2k
_ R _ %
By = Vi, Bix Biki1 = Var Box

32



Choose initial Byg, A1, Az, V from SE fixed point

. B . _
X1k = PrOXA—llf (A—llk> %ok = (ATA + Axld) " (ATy + Boy)
%5

Byx = — — Bk Bixy1 = Vo B«

Not intended to be used in practice ! For the sake of the proof.
Codable only in teacher student setup

33



Remember Douglas-Rachford (take p = 1) :

ZK = (2Prox,¢ — Id) o (2Prox., g — Id)(2")

x* = Prox,¢(z")
VAMP with fixed variances and parameters :

1 . 1 .
t+1 __ t
B, = (—VProxAllf(—Al) - Id> o (—\/Prox2/§2 IIV—AX\@(_A2) - Id) (B3)

VAMP is Douglas-Rachford with adaptative parameters
Actually A;, A, are adapted to the curvature of f and g.

34



Rigorous mathematical
statement

Last ingredient



Now that we have

e the algorithm VAMP that tries to find x*
e exact equations that describe the mean squared error of VAMP's
fixed point estimator

Are we done??

Figure 7: | NEED A CONVERGING TRAJECTORY
35



Generate a sequence with the prescription :
BS™ = 01 0 05(BY)

where O; = —Prox i f(—) —Id
1 .
and 02 = VProxﬁlly—AXH%(A_z) — Id
Find upper bound on the Lipschitz constant of O; 0 O, — OK

Can we make it a contraction ?

36



Enforcing strong convexity and smoothness :

- 1 A2
2 = argmin =l — Axl3 + F() + 22 I3
xERN

Possibility to enforce convergence for large enough X\,

e Proof complete for any A, large enough.
e Generalization to any A, with analytical continuation is valid.

e Non-differentiable functions can be approximated.

37



Extension of the result




phi(u)
00 05 10 15 20 25 30

e Keep linear model :

f(a)=x"a 7
e Change the square loss: S S
L(x,y) ‘

Logistic regression with /1 penalty
N
X(v, D) = argmin cpn [ Zlog e 'yz |x,-|]
p=1 i=1
Max-margin classifier with /; penalty

M N
X(7v, D) = argmin, cgn [— Z max(0,1 — yﬂalx) +7 Z |x,-|]
p=1 i=1
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Corresponding extension of VAMP — Generalized-VAMP

Algorithm 1 VAMP for the SLM
Require: LMMSE cstimator g (25, 12+ from (1), denoiser
g1(-+71&), and number of iterations K.
1: Select initial 719 and 719 > 0.
2 for k=0,1,....K do
3/ Denoising
Zre =gy (T1k, k), 0ak = (g (rak, k)
rar = @1k — car1e)/ (1 — k)
Yo = k(1 — ) /e
/I LMMSE estimation
Tk = ga(rar, vax)> 2k = (g5(r2r,72k))
9 T = (Bok — aerar) /(1 — aak)
100 e = ror(l — ank)/ank
11: end for
12: Return &5

Algorithm 2 VAMP for the GLM

Require: LMMSE estimators g, and g, from (L3) or (16),

denoisers g,.; and g.,, and number of iterations K.

1: Select initial 719,Py0, o > 0,710 > 0.

2 for k=0,1,.
5/l Denoising @

4 Bk =g (rie k), 01k = (g5 Pk, k)

5 rak = (Zak — aerie)/(1— oax

6 ok =7ik(1 — )/ ok

7. // Denoising =

& Z =0, (P )y Bue = (gL (Pigo k)

9 Po = (Z1k — Bukpus)/ (1~ Buk)

10: 7ok = 7ix(1 = Bi)/Bi

11 // LMMSE estimation of @

120 B = Gop(Tak, Poys Yok T2k). 2k = (Ga(---))
B e = (@2 — aoera) /(1 - oz

M e = Yos(l - a2) ook

15 // LMMSE estimation of z

160 ok = Gup(Fok: Pors Y2ky T2k)s Pak = {gla(-- 1))
1 Py = (Fak — B/ (1— Bai)

18 Tien = k(1 — Bak)/Bak

19: end for

20: Return Zg.

Figure 8: Slightly thicker stuff...

Same proof structure. Convergence analysis requires more sophisticated

tools :

Lyapunov arguments from dynamical systems.
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We proved a statistical physics heuristic result (replica formula) for
penalized linear regression, with rotationally invariant matrices.

e This could be done thanks to message-passing algorithms,
well-understood in statistical physics, which makes them great
theoretical tools.

e We used concepts from convex optimization, random matrix theory..

— Exciting problems at the crossroads of several fields! Such "simple”
models are the building blocks to understand more complex algorithms.
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Thank you :)
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