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Figure 1: Binary classification on Mnist/Fashion-Mnist, odd vs even, ¢,
regularized logistic regression
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Figure 1: Binary classification on Mnist/Fashion-Mnist, odd vs even, ¢,

regularized logistic regression

Exact theory ? So what's the answer ?
[B. Loureiro, G. Sicuro, C. Gerbelot, A. Pacco, F. Krzakala, L. Zdeborova '21]



Theorem 1 (Concentration properties of the estimator). Let &xe(x) ~ N(0,1k) be collection of
K-dimensional standard normal vectors independent of other ities. Let also be {2} a set of

K matrices, Zy, € RK*4, with i.i.d. standard normal entries, independent of other quantities. Under
the set of assumptions (A1-AS), for any pseudo-Lispchitz functions of finite order ¢1 : RE*4 —
R, ¢ : REX™ 5 R, the estimator W* and the matrix Z* = ﬁW"X verify:

H(W*) Bz [0i(G)], #(Z) o Rl ©

where we have introduced the proximal for the loss:

Ry = V72 Prox, V],z.)(v;;l/"’uk) €RY,  wr=my+b+QY%, 16)

and H € RE*™ is obtained by concatenating each hy, pyn times. We have also introduced the
matrix proximal G € R¥*4;

G= A%GProxT(A%e.)(A%QB), Al= Xk:f/k@):k, B= zk:(ukmﬁs,c 0 Qr®%).

The collection of parameters (Qy,, vy, Vi, Qk, e, Vk) ke[K) is given by the fixed point of the
P e . A

J g selj q

Qr=1E=[G=,GT) Or= apiEE -

_9 k= Qpy g[.f]kfk]
me= \/EIEE[GI%] A . Vi —apeQp PEe (7€) ®)
Vk=5Es[(G o(@en) olxe zk)) ] ri= cprEe [fr]

where fi, = V,;l(h;c — wy), and the vector b* is such that %, prE¢ (Vi f] = 0 holds.

Figure 2: Main theorem from [B. Loureiro, G. Sicuro, C. Gerbelot, A. Pacco, F.

Krzakala, L. Zdeborova '21]



What's the motivation for these formulas 7 Why are they useful ? How
are they obtained 7
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A hidden process generates w € R? with large d
W~ pw(w) (1)

We observe y € R" s.t.
y ~ py (y|w) (2)

Estimate w 7

MMSE estimator : w = E [wly], i.e.

W= s [ wanw)e (v1w) du(w) 3)

Problem : This is a high-dimensional integral !
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Typically pw o exp(—Sf(w)) and py o< exp(—Sg(w,y))

W= 5o [wee(—B(ewy) + fw))duw) (@

e Equilibrium Boltzmann measure
e Hamiltonian H(w,y) = g(w,y) + f(w)

e [3is the inverse temperature

Stat. phys. toolbox deals with this problem



e distributions involve a dense, random interaction matrix X € R"*9
e y can come from another stochastic model, i.e.
y~ pO,y(Y|x7W0a 6)7 Wo ~ Pwo(WO)

e estimate the generative model with postulated densities g, f

v = % [ wexn(-5 (e(xw.y) + Fw))duw)  (5)



distributions involve a dense, random interaction matrix X € R"*d

e y can come from another stochastic model, i.e.

y~ Po,y(Y|X,Woa 6)7W0 ~ pWo(WO)

estimate the generative model with postulated densities g, f

v = % [ wexn(-5 (e(xw.y) + Fw))duw)  (5)

Disordered equilibrium Boltzmann measure

toolbox : replica/cavity method, belief-propagation, etc...

e focus on X with i.i.d. N/(0,1) elements



Reducing the dimension and exact computation

Central limit theorem:
If {w;}¢_, i.i.d. in L2, then

d .
% (Z w; — dE [W]) %) N(0,0?%) (6)
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Reducing the dimension and exact computation

Central limit theorem:
If {w;}¢_, i.i.d. in L2, then

d
1 in law ’
7 (;W'—dE[WO mN(OaU ) (6)
Concentration of measure :
P
o(w) —2— E[o(w)] = E[o(w)] )
for sufficiently regular ® and fast decaying py.
Want the same thing for w

Problem : w is not i.i.d.! Strong coupling notably due to X
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Stat.phys. toolbox (and ensuing math !!)

I

Product measure of simple components describing w for large n, d

Theorems then take the form

O(W) ——— E [ (AZ), {g:},cs)]

n,d—-+o0

oW) — > E [6 (w(2),{as}scs)] i separable problem, 1D integral

Z <R iid. N(0,1)

Q explicit, bounded variation function

gs are low-dimensional paramaters

e given by explicit, self-consistent equations



Recall

v = % [ wexn(=5 (X ) + F(w))du(x) (8)

For 5 — +00, Laplace’s method gives

W ——  argmin,cps g(Xw,y)+ f(w) (9)
B—400

Empirical risk minimization with n samples in RY
Examples : LASSO, logistic regression, etc ...

From the decoupled measure : training, generalization error,
phenomenology, etc ...



typical case
e benchmark, random design problems

exact solutions

strong assumptions (i.i.d. Gaussian !)
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typical case
e benchmark, random design problems

exact solutions

strong assumptions (i.i.d. Gaussian !)

How realistic are the stat. phys. benchmarks ?
What can we do to make them more realistic ?

10



Observe " teacher’ generative model

y = fo(Xwp) €R", woeR? X e R™9jid N(0,1)
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Observe " teacher’ generative model
y = fo(Xwp) €R", woeR? X e R™9jid N(0,1)
Learn with " student’

w* € argmin L (y, Xw) + r(w)
weRd

e [ r are a convex loss and penalty
e n,d — 400 with fixed ratio
Goal : statistical properties of w*

Beyond i.i.d. assumption : introduce correlation

11



Teacher and student with different feature spaces

Block covariate model proposed in
[B. Loureiro, CG, H. Cui, S. Goldt, M. Mézard, F. Krzakala, L. Zdeborova '21]

[5 > WZ'%(%WJU”),

n To,u
w” = argmin,, cga lZ/ (W\/g ’yu> + r(w)

pn=1

v o
o7 Q

eERPTI W N <0,

Many works: [E. Dobriban, S. Wager '15][PL. Bartlett, PM. Long, G. Lugosi, A.
Tsigler '19][T. Hastie, A. Montanari, S. Rosset, RJ. Tibshirani '19][M. Celentano, A.
Montanari, Y. Wei '20]

12



Unique fixed point of self-consistent equations

V=Ey 6)~pn [ﬁ] V=21 —E; pnonlz (V, m, q)])
i 8 ] = Lo S, hnion) [sz(v, m, q)— Zz'(V, m,q)

e}

m= 75w~ 3305 ] s
~252 a2 i 2
0= B | FESE ] 0= Eonnion (o V- Zh—aV.m.a))

where z(V, m, q) = PFOXVI(.,fO(\/zs))(P_l/ZmS +/q — p~tm?h)



Unique fixed point of self-consistent equations

<>
Il

V =E4,0)~n [ﬁ] %(1 — Es honvo,n[2' (V, m, q)])
0 m

m= LB, 5y Af%] ) = = PEshen0) [SZ(V m,q)— 252" (V. m,q)

~2 52 a2
a=E(, g)p [m} = FEs hun0.1) [(%s +4/a— ’"Th—Z(V7 m, q))

(i Ve)?
where z(V, m, q) = prox;_ fo(fs)) 2ms + \/q — p—tm2h)

3

e}

n, p,d — oo, training and generalization error :

s P m* m*2
Etrain. (W) ——— Es hono1) [’ <P'°XV*/(4,fo(ﬁs)) (\/,—)5+ \[9" — ph> ,ﬁ(ﬁs))]

Egen. (W) —— By, [2 (FO), 6() )]



Ridge regression works well ...
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Figure 3: (Left) Ridge regression on real data. (Right) Logistic regression with
real and synthetic (GAN) data

... but classification is more problematic
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Figure 3: (Left) Ridge regression on real data. (Right) Logistic regression with
real and synthetic (GAN) data
... but classification is more problematic

Need for another realistic benchmark problem
14



Study classification of k-Gaussian mixture with convex GLM

15



Study classification of k-Gaussian mixture with convex GLM

e Benchmark problem in ML, universal approximation, ...

e many scenarios described by Gaussian mixtures (GANs, 'Neural
collapse’, ...)

[M. Seddik, C. Louart, M. Tamaazousti, R. Couillet, '20][V. Papyan, X. Han,
D.Donoho, '20]

15



Data and teacher
K

XERd,y eRK P(X7y) :ZYkPkN(X|“kvzk)7
k=1

Figure 4: K=3, d=2

16



Data and teacher

K
xRy e RN P(x,y) = Z}’kPkN(xll-“kyzk)y
k=1

Student

W* e min L(Y,XW)+ r(W)
WERIxK

Learn K separating hyperplanes, i.e. a matrix W € R9*K

Examples : ridge regression, softmax with cross-entropy, ...

17



Fixed-point of self-consistent equations

ok = %EE[GZkGT] Ok = apk]Es I:fkfkT]
M, = LE=[G N 1

k=75 =[Gl o Vi = —ap@Q, 2R, [fkgT]
Vi = 1E= [(G 0] (Qk ® Zk) 2O (k® Zk)) EZ} fine = apiBe [Fi]

1 1 N =
where G=A2 OProx ; (A2 OB), ATl=, V, ®%, B=3X, (ukﬁ.z +Ek®\/ak®zk)
r(A2 Qe)

—1 1/2
V, “(hy —wy), hy =V Prox
k k k7> Mk k ey

fr = Vi Pup), wi = My + b+ 0} g,

/.)



Fixed-point of self-consistent equations

Qi = LE=[G%,G] Qi = apiBe I:fkfkT]
M, = LEz[G v 5

k=g =[Gr] A o Vi=—apQ, 2Ee [kaT]
V= 1E= [(G ® (Qk ® zk) *o(k® Zk)) E’T} M = apile [fi]

1 1 N =
where G =A2 OProx 1 (A2 @B), A l=3,V, ®%, B=Y, (ukﬁ.z + 3, 0 4/Q ®zk)

r(A2 Qe)

— y—1! 1/2 1/2
fr = Vi (hy — wy), hy = Vk/ Prox /

=il _
v wy), wp =M +b+Q, "€
Z(ek,Vi/zo)( k k) k k k k

Training and generalization for n,d — oo :

K

K
e =1-Y pBe[fu(he)], e =1-> pEe [Pu(wi)].
k=1 p



For any convex GLM (separable, covariance, matrix variable, etc ...)

Same global form of the result
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e estimator w
e "ground-truth” wq/u, random data with covariance X

e cost function L + r.
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For any convex GLM (separable, covariance, matrix variable, etc ...)
Same global form of the result

Problem defined by :

e estimator w
e "ground-truth” wq/u, random data with covariance X

e cost function L + r.

Statement
W ~ nonlinearity, (o * ground-truth + gaussian)

With low-dim. closed form parameters.

19



For any "well-behaved” observable ¢;:

(W) :ﬁ;ﬁ Ez [¢1(G)]
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For any "well-behaved” observable ¢;:

(W) :ﬁ;ﬁ Ez [¢1(G)]

2Qe)

A_IEZVk(X)zk, BEZ(ukﬁTIﬂLEk@\/ok@Zk)-
K K

G=A:0 Prox, (A: © B),
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For any "well-behaved” observable ¢;:

(W) :ﬁ;ﬁ Ez [¢1(G)]

G=Az0 Proxr(A;@.)(AE ©® B),

AT =) Vo E, BzZ(ukmhzk@\/Ok@zk).
k k
Qi = 3E=[GX,G]

My = J-Ez[Gu]
1
V= JE= [(G 0] (Ok ® Zk) ok ®):k)> EkT]

where

2}

k = apkBe [fkf;r]

_1
k= —apQ, 2Ee [F&T]
r”nk = akaEs [fk]

<<

fi= V;l(hk —wg), he = V,l(/2 Proxz(ek Vi/z.)(V;l/zwk), wi =M, +b+ o}(/zgk

20



® very generic statement

e greatly simplifies with assumptions on covariances, separability of
functions, ...

e in most cases reduces to low dimensional statement

21
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Figure 5: Ridge penalized logistic regression on K Gaussian clusters,
Y, = Ald. (Left) Sample complexity (Right) Regularization

Related works :[T. Cover '69][E. Gardner, B. Derrida '89] [EJ. Candés, P. Sur '20] [F.
Mignacco, F. Krzakala, Y. Lu, P. Urbani, L. Zdeborova '20][C. Thrampoulidis, S.
Oymak, M. Soltanolkotabi '20] 22
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correlated Gaussian designs are meaningful

study the phenomenology : sample complexity, regularization, etc...

more models : ensembling, boosting

dataset/feature map distribution AND predictor geometry

both important for Gaussian equivalence

Ongoing research : what feature maps and predictors have
Gaussian equivalence properties ?

25



Recall the problem : find a decoupled/product measure

e Guerra interpolation

Gordon minmax

cavity method

e approximate message passing iterations

Focus on AMP iterations
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Recall the problem : find a decoupled/product measure

Guerra interpolation - interpolate with a known replica solution

Gordon minmax - Gaussian comparison inequalities
e cavity method - effect of a single variable among d

e approximate message passing iterations - more detail shortly

Focus on AMP iterations
Initially a relaxation of belief propagation equations

27



A ~ GOE(N), then

x1 = Am* — pym*! (10)

mt = £(x’) (11)
with initialization at x° and Onsager correction

be = div [f(x")] (12)
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A ~ GOE(N), then
xt1 = Am® — pm*~! (10)
mt = f,(xt) (11)
with initialization at x° and Onsager correction
b; = div [ft(xt)] (12)

PLk
Theorem : for any t, xt = Z' ~ N(0, e, eln)
—00

where K¢y = Nlim % [Fizt YTzt )] (13)

—00

First proof due to E.Bolthausen '09, '14, M. Bayati & A. Montanari '11

28



x = Am' — bym'! (14)

m’ = £(x") (15)
Define the o-algebra &; = o(x!,x?, ...,xt). We then have :

xt+1|6t _ A|6tmt o btmt_l

29



x = Am' — bym'! (14)

m’ = f;(x") (15)
Define the o-algebra &; = o(x!,x?, ...,xt). We then have :
xg, = Alg,m" — bym' !
Gaussian conditioning lemma

Als, = E[A|S¢] + P:(A)
1 1 L ADL
=A- PMtflAPMtfl + PMt—lAPMt—l

where M,_1 = [m°|...|m*~] and A is an independent copy of A.

29



A bit of algebra leads to

x =X, 10, + Py APy m'+[0|M,_] B, + Py, ,Am’ — bm'™!

Xls,

Part 1 Part 2
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A bit of algebra leads to

x =X, 10, + Py APy m'+[0|M,_] B, + Py, ,Am’ — bm'™!

Xls,

Part 1 Part 2
e Part 1 concentrates (induction+Gaussian concentration)

e Part 2 goes to zero w.h.p. as N — oo

e Onsager correction b; cancels the bothersome part

30



Advantages:

e very generic and adaptable (non-convex, multilayer, committee,...)
e algorithm + fixed points

e control of trajectory understood in the convex case
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Advantages:

e very generic and adaptable (non-convex, multilayer, committee,...)
e algorithm + fixed points

e control of trajectory understood in the convex case
Disadvantage:

e state evolution proofs are tedious, case by case basis

e control of trajectory in non-convex/RS case ? (SK above AT line)
Solution

e unifying framework for AMP iterations

e generic, modular proof of SE equations

([C. Gerbelot, R. Berthier '21])

31



The oriented graph:

Arbitrary composition of this structure

32



The graph-based AMP iteration

xSt = Agmy, — blomi?, (16)
my = fo (K9)zene) - (17)

where bt? is the so-called Onsager term

hla:
bl = %Tr <

(%)eene)  ER. (18)

Xe

33



The graph-based AMP iteration

xF' = Agmiy — bymi, (16)
ma =2 ((xe) e 2o2) (17)
where b%, is the so-called Onsager term
1__ of%
t, — t
b? = N Tr o ((X?,)?,:?,%?) eR. (]_8)

Theorem (informal):

any Graph-based AMP iterations admits rigorous SE equations

33



Embed the graph into a large, matrix valued iteration of the form

X = AM' - M b/

AM =

A2, fe, ((x%)?;z’aq)

A? f% ()
0 &y
t
Ao .
o A ()
1 4

and prove its SE equations.

34



e SE-converging trajectory — properties of estimators

design of the iteration is key (not discussed here)

sample from non-convex priors/posteriors, multilayer, etc ...

study the dynamics of learning algorithms, notably SGD
[M.Celentano, C. Cheng, A. Montanari '21]
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Thank you

Collaborators : Bruno Loureiro, Gabriele Sicuro, Raphaél Berthier, Lenka
Zdeborova and Florent Krzakala
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