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Supervised learning : learning from labeled examples

◦ Input space A (ex. RN)

◦ Output space Y (ex. {−1, 1} for classification, R for regression)

◦ Training set SM = (ai , yi )i=1,...,M of (input,output) pairs.

Goal is to estimate a function h : A → Y to predict new outputs

Figure 1: Classification Figure 2: Regression
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Choosing a parametrization : simple taste

Convex generalized linear model

x∗ = arg min
x∈RN

{
M∑
i=1

g(aT
i x, yi ) + f (x)

}
(1)

where y = φ(Ax0)

x0 ∼ px0

• ground-truth x0 pulled from any (well-behaved) distribution

• f , g are convex functions

• high dimensional limit M,N →∞, fixed ratio α = M/N
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Examples

Linear regression (ridge, LASSO, elastic-net...)

x∗ = arg min
x∈RN

{
1

2
‖y − Ax‖22 + f (x)

}
Logistic regression

x∗ = arg min
x∈RN

{
N∑
i=1

log(1 + exp(−yiaT
i x)) + f (x)

}

Linear Support Vector Classifier

x∗ = arg min
x∈RN

{
N∑
i=1

max(0, 1− yia
T
i x) + f (x)

}
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Objective : how good is my regression ?

Asymptotic reconstruction performance

ρ0 = lim
N→∞

1

N
‖x0‖22

q∗ = lim
N→∞

1

N
‖x∗‖22

m∗ = lim
N→∞

1

N
xT0 x∗
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Objective : how good is my regression ?

Asymptotic reconstruction performance

ρ0 = lim
N→∞

1

N
‖x0‖22

q∗ = lim
N→∞

1

N
‖x∗‖22

m∗ = lim
N→∞

1

N
xT0 x∗

(MSE) E = lim
N→∞

1

N
‖x∗ − x0‖22 = ρ0 − 2m∗ + q∗

(Angle) θ = lim
N→∞

(x0, x
∗) = arccos

(
m∗√
ρ0q∗

)
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Statistical physics of supervised learning

Hamiltonian :

H(A, y) =
M∑
i=1

g(aT
i x, yi ) + f (x)

Partition function :

Z =

∫
A,Y

exp(−βH(A, y))dµ(A)dµ(y)
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Statistical physics of supervised learning

Hamiltonian :

H(A, y) =
M∑
i=1

g(aT
i x, yi ) + f (x)

Partition function :

Z =

∫
A,Y

exp(−βH(A, y))dµ(A)dµ(y)

Replica computation works very well

Figure 3: Convexity ? Too easy...
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Proving replicas : some history and Bayes optimality

Gaussian interpolation → Krzakala lecture

(i) in math. stat. phys. [Guerra, Toninelli02], [Talagrand03]

(ii) Bayes optimal, i.i.d. Gaussian case [BDMK16]

(iii) Bayes optimal, correlated Gaussian/complex case [MLKZ20]
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Proving replicas : some history and Bayes optimality

Gaussian interpolation → Krzakala lecture

(i) in math. stat. phys. [Guerra, Toninelli02], [Talagrand03]

(ii) Bayes optimal, i.i.d. Gaussian case [BDMK16]

(iii) Bayes optimal, correlated Gaussian/complex case [MLKZ20]

Bayes optimal is perfect for sig. proc.

⇓
Machine learning is not Bayes optimal
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Out of Bayes optimality : asymptotic errors

LASSO risk for Gaussian matrices [BM11]. A i.i.d. N (0, 1).

x∗ = arg min
x∈RN

{
1

2
‖y − Ax‖22 + λ1|x |

}
y = Ax0 + w0
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Out of Bayes optimality : asymptotic errors

LASSO risk for Gaussian matrices [BM11]. A i.i.d. N (0, 1).

x∗ = arg min
x∈RN

{
1

2
‖y − Ax‖22 + λ1|x |

}
y = Ax0 + w0

Use approximate message-passing

zt = y − Ax̂t +
1

α
zt−1〈η′(x̂t−1 +

1

α
AT zt−1, θt−1)〉

x̂t+1 = η(x̂t +
1

α
AT zt , θt)

η is the soft-thresholding operator (proximal of `1)
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AMP state evolution equations

AMP for LASSO risk

zt = y − Ax̂t +
1

α
zt−1〈η′(x̂t−1 +

1

α
AT zt−1, θt−1)〉

x̂t+1 = η(x̂t +
1

α
AT zt , θt)

State evolution, Z ∼ N (0, 1) [BM11+]

V = Ez,x0{[η′(X0 +

√
∆0 + E

α
Z ; θ(V ))]2}

E = Ez,x0{[η(X0 +

√
∆0 + E

α
Z ; θ(V ))− X0]2}

Same result as the replica computation [KMSSZ12]
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Our goal

For non-Bayes optimal problem :

Can we go beyond i.i.d Gaussian A ?

For any convex loss and regularization g , f ?
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Our goal

Can we go beyond i.i.d Gaussian F ?

Rotationally invariant matrix

A = UDVT , U,V Haar distributed, and D contains singular values with

arbitrary distribution with compact support.

For any convex loss and regularization g , f ?

Any convex, separable g , f .

Build on replica results from [Kabashima07], [RGF09]
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Brief recap

What we know so far:

◦ prove asymptotic errors/replica formula

◦ beyond Bayes optimal and i.i.d, generic f,g

◦ no Gaussian interpolation

◦ message-passing and state evolution
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Sketch of proof : key points ...

Key points :

(i) build a sequence whose fixed point solves problem (1)

(ii) asymptotic statistical characterization, match replica prediction

(iii) ensure convergence of the sequence

At the fixed point of the sequence, we will have x∗ and its statistical

properties.
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Sketch of proof : key points ... and how to handle them

Key points :

(i) Use vector approximate message-passing [Rangan et. al. 2019]

(ii) Statistical characterization with state evolution equations

(iii) Study the convergence of VAMP
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Vector approximate message passing [RSF16]

Same intuition as AMP, for rot. inv. matrices

Figure 4: Vector AMP (linear regression)

State evolution for any spectrum
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Generalized vector approximate message passing

Figure 5: GVAMP (GLM)
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VAMP State evolution and replicas with rot. inv. matrices

The state evolution equations are a little thick...

The replica equations are worse ...

They match [TK20], [GAK20], [GAK20+]
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Convergence of the sequence

Use convex analysis methods :

◦ Lipschitz constants

◦ Lyapunov function (control theory methods)

◦ use geometrical properties (strong convexity)

For both VAMP and GVAMP:

Convergent sequences for sufficiently strongly convex problems

[GAK20][GAK20+]
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Numerical verification : learning a sign teacher

Figure 6: Reconstruction angle θ = (x0, x
∗) as a function of aspect ratio

α = M/N. Left : a Gaussian i.i.d. matrix Right : a random orthogonal

invariant matrix with a squared uniform density of eigenvalues.
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Thank you
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