Asymptotics of generalized linear models beyond Gaussian matrices

Cedric Gerbelot

Joint work with A. Abbara and F. Krzakala

Ecole Normale Superieure, PSL University, Paris, France August 11, 2020

Supervised learning : learning from labeled examples

- Input space A (ex. $ℝ^N$)
- $\circ~$ Output space $\mathcal Y$ (ex. $\{-1,1\}$ for classification, $\mathbb R$ for regression)
- Training set $S_M = (\mathbf{a}_i, y_i)_{i=1,...,M}$ of (input,output) pairs.

Goal is to estimate a function $h:\mathcal{A}\to\mathcal{Y}$ to predict new outputs

Figure 1: Classification

Figure 2: Regression

Convex generalized linear model

$$\begin{aligned} \mathbf{x}^* &= \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^N} \left\{ \sum_{i=1}^M g(\mathbf{a}_i^T \mathbf{x}, y_i) + f(\mathbf{x}) \right\} \end{aligned} \tag{1} \\ \text{where} \quad \mathbf{y} &= \phi(\mathbf{A}\mathbf{x}_0) \\ \mathbf{x}_0 \sim p_{\mathbf{x}_0} \end{aligned}$$

- ground-truth x_0 pulled from any (well-behaved) distribution
- f, g are convex functions
- high dimensional limit $M, N \rightarrow \infty$, fixed ratio $\alpha = M/N$

Examples

Linear regression (ridge, LASSO, elastic-net...)

$$\mathbf{x}^* = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^N} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_2^2 + f(\mathbf{x}) \right\}$$

Logistic regression

$$\mathbf{x}^* = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^N} \left\{ \sum_{i=1}^N \log(1 + \exp(-y_i \mathbf{a}_i^T \mathbf{x})) + f(\mathbf{x}) \right\}$$

Linear Support Vector Classifier

$$\mathbf{x}^* = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^N} \left\{ \sum_{i=1}^N \max(0, 1 - y_i \mathbf{a}_i^T \mathbf{x}) + f(\mathbf{x}) \right\}$$

Asymptotic reconstruction performance

$$\rho_0 = \lim_{N \to \infty} \frac{1}{N} \|\mathbf{x}_0\|_2^2$$
$$q^* = \lim_{N \to \infty} \frac{1}{N} \|\mathbf{x}^*\|_2^2$$
$$m^* = \lim_{N \to \infty} \frac{1}{N} \mathbf{x}_0^T \mathbf{x}^*$$

Asymptotic reconstruction performance

$$\rho_0 = \lim_{N \to \infty} \frac{1}{N} \|\mathbf{x}_0\|_2^2$$
$$q^* = \lim_{N \to \infty} \frac{1}{N} \|\mathbf{x}^*\|_2^2$$
$$m^* = \lim_{N \to \infty} \frac{1}{N} \mathbf{x}_0^T \mathbf{x}^*$$

(MSE)
$$E = \lim_{N \to \infty} \frac{1}{N} \|\mathbf{x}^* - \mathbf{x}_0\|_2^2 = \rho_0 - 2m^* + q^*$$

(Angle) $\theta = \lim_{N \to \infty} (\mathbf{x}_0, \mathbf{x}^*) = \arccos\left(\frac{m^*}{\sqrt{\rho_0 q^*}}\right)$

Hamiltonian :

$$\mathcal{H}(\mathbf{A}, \mathbf{y}) = \sum_{i=1}^{M} g(\mathbf{a}_i^T \mathbf{x}, y_i) + f(\mathbf{x})$$

Partition function :

$$\mathcal{Z} = \int_{\mathcal{A}, \mathcal{Y}} \exp(-eta \mathcal{H}(\mathbf{A}, \mathbf{y})) d\mu(\mathbf{A}) d\mu(\mathbf{y})$$

Statistical physics of supervised learning

Hamiltonian :

$$\mathcal{H}(\mathbf{A}, \mathbf{y}) = \sum_{i=1}^{M} g(\mathbf{a}_i^T \mathbf{x}, y_i) + f(\mathbf{x})$$

Partition function :

$$\mathcal{Z} = \int_{\mathcal{A},\mathcal{Y}} \exp(-eta \mathcal{H}(\mathbf{A},\mathbf{y})) d\mu(\mathbf{A}) d\mu(\mathbf{y})$$

Replica computation works very well

Figure 3: Convexity ? Too easy...

Gaussian interpolation \rightarrow Krzakala lecture

- (i) in math. stat. phys. [Guerra, Toninelli02], [Talagrand03]
- (ii) Bayes optimal, i.i.d. Gaussian case [BDMK16]
- (iii) Bayes optimal, correlated Gaussian/complex case [MLKZ20]

Gaussian interpolation \rightarrow Krzakala lecture

(i) in math. stat. phys. [Guerra, Toninelli02], [Talagrand03]

(ii) Bayes optimal, i.i.d. Gaussian case [BDMK16]

(iii) Bayes optimal, correlated Gaussian/complex case [MLKZ20]

Bayes optimal is perfect for sig. proc. $\label{eq:matrix} \Downarrow$ Machine learning is not Bayes optimal

LASSO risk for Gaussian matrices [BM11]. A i.i.d. $\mathcal{N}(0, 1)$.

$$\begin{split} \mathbf{x}^* &= \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^N} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_2^2 + \lambda_1 |x| \right\} \\ \mathbf{y} &= \mathbf{A} \mathbf{x}_0 + \mathbf{w}_0 \end{split}$$

LASSO risk for Gaussian matrices [BM11]. A i.i.d. $\mathcal{N}(0,1).$

$$\begin{split} \mathbf{x}^* &= \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^N} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_2^2 + \lambda_1 |x| \right\} \\ \mathbf{y} &= \mathbf{A} \mathbf{x}_0 + \mathbf{w}_0 \end{split}$$

Use approximate message-passing

$$\begin{aligned} \mathbf{z}^{t} &= \mathbf{y} - \mathbf{A}\hat{\mathbf{x}}^{t} + \frac{1}{\alpha}\mathbf{z}^{t-1} \langle \eta'(\hat{\mathbf{x}}^{t-1} + \frac{1}{\alpha}\mathbf{A}^{T}\mathbf{z}^{t-1}, \theta^{t-1}) \rangle \\ \hat{\mathbf{x}}^{t+1} &= \eta(\hat{\mathbf{x}}^{t} + \frac{1}{\alpha}\mathbf{A}^{T}\mathbf{z}^{t}, \theta^{t}) \end{aligned}$$

 η is the soft-thresholding operator (proximal of ℓ_1)

AMP for LASSO risk

$$\mathbf{z}^{t} = y - \mathbf{A}\hat{\mathbf{x}}^{t} + \frac{1}{\alpha}\mathbf{z}^{t-1}\langle \eta'(\hat{\mathbf{x}}^{t-1} + \frac{1}{\alpha}\mathbf{A}^{T}\mathbf{z}^{t-1}, \theta^{t-1})\rangle$$
$$\hat{\mathbf{x}}^{t+1} = \eta(\hat{\mathbf{x}}^{t} + \frac{1}{\alpha}\mathbf{A}^{T}\mathbf{z}^{t}, \theta^{t})$$

State evolution, $Z \sim \mathcal{N}(0,1) \; [\text{BM11+}]$

$$V = \mathbb{E}_{z,x_0} \{ [\eta'(X_0 + \sqrt{\frac{\Delta_0 + E}{\alpha}}Z; \theta(V))]^2 \}$$
$$E = \mathbb{E}_{z,x_0} \{ [\eta(X_0 + \sqrt{\frac{\Delta_0 + E}{\alpha}}Z; \theta(V)) - X_0]^2 \}$$

Same result as the replica computation [KMSSZ12]

For non-Bayes optimal problem :

Can we go beyond i.i.d Gaussian A ?

For any convex loss and regularization g, f?

Can we go beyond i.i.d Gaussian F?

Rotationally invariant matrix

 $A = UDV^{T}$, U, V Haar distributed, and D contains singular values with arbitrary distribution with compact support.

For any convex loss and regularization g, f?

Any convex, **separable** g, f.

Build on replica results from [Kabashima07], [RGF09]

What we know so far:

- $\circ\,$ prove asymptotic errors/replica formula
- $\circ\,$ beyond Bayes optimal and i.i.d, generic f,g
- $\circ~$ no Gaussian interpolation
- $\circ\,$ message-passing and state evolution

Key points :

- (i) build a sequence whose fixed point solves problem (1)
- (ii) asymptotic statistical characterization, match replica prediction
- (iii) ensure convergence of the sequence

At the fixed point of the sequence, we will have \mathbf{x}^* and its statistical properties.

Key points :

- (i) Use vector approximate message-passing [Rangan et. al. 2019]
- (ii) Statistical characterization with state evolution equations
- (iii) Study the convergence of VAMP

Vector approximate message passing [RSF16]

Same intuition as AMP, for rot. inv. matrices

Algorithm 1 VAMP for the SLM **Require:** LMMSE estimator $g_2(r_{2k}, \gamma_{2k})$ from (10), denoiser $g_1(\cdot, \gamma_{1k})$, and number of iterations K. 1: Select initial r_{10} and $\gamma_{10} > 0$. 2: for k = 0, 1, ..., K do 3: // Denoising $\widehat{\boldsymbol{x}}_{1k} = \boldsymbol{g}_1(\boldsymbol{r}_{1k}, \gamma_{1k}), \quad \alpha_{1k} = \langle \boldsymbol{g}_1'(\boldsymbol{r}_{1k}, \gamma_{1k}) \rangle$ 4: $\boldsymbol{r}_{2k} = (\widehat{\boldsymbol{x}}_{1k} - \alpha_{1k}\boldsymbol{r}_{1k})/(1 - \alpha_{1k})$ 5: $\gamma_{2k} = \gamma_{1k}(1 - \alpha_{1k})/\alpha_{1k}$ 6: 7: // LMMSE estimation $\widehat{\boldsymbol{x}}_{2k} = \boldsymbol{g}_2(\boldsymbol{r}_{2k}, \gamma_{2k}), \quad \alpha_{2k} = \langle \boldsymbol{g}_2'(\boldsymbol{r}_{2k}, \gamma_{2k}) \rangle$ 8: 9: $\mathbf{r}_{1,k+1} = (\widehat{\mathbf{x}}_{2k} - \alpha_{2k}\mathbf{r}_{2k})/(1 - \alpha_{2k})$ $\gamma_{1,k+1} = \gamma_{2k} (1 - \alpha_{2k}) / \alpha_{2k}$ 10: 11: end for 12: Return \widehat{x}_{1K} .

Figure 4: Vector AMP (linear regression)

State evolution for any spectrum

Generalized vector approximate message passing

Algorithm 2 VAMP for the GLM Require: LMMSE estimators g_{x2} and g_{z2} from (15) or (16),

denoisers g_{x1} and g_{z1} , and number of iterations K. 1: Select initial r_{10} , p_{10} , $\gamma_{10} > 0$, $\tau_{10} > 0$. 2: for $k = 0, 1, \dots, K$ do 3: // Denoising x4: $\widehat{\boldsymbol{x}}_{1k} = \boldsymbol{g}_{x1}(\boldsymbol{r}_{1k}, \gamma_{1k}), \quad \alpha_{1k} = \langle \boldsymbol{g}'_{x1}(\boldsymbol{r}_{1k}, \gamma_{1k}) \rangle$ 5: $\mathbf{r}_{2k} = (\hat{\mathbf{x}}_{1k} - \alpha_{1k}\mathbf{r}_{1k})/(1 - \alpha_{1k})$ 6: $\gamma_{2k} = \gamma_{1k} (1 - \alpha_{1k}) / \alpha_{1k}$ 7: // Denoising z 8: $\widehat{\boldsymbol{z}}_{1k} = \boldsymbol{g}_{z1}(\boldsymbol{p}_{1k}, \tau_{1k}), \quad \beta_{1k} = \langle \boldsymbol{g}'_{z1}(\boldsymbol{p}_{1k}, \tau_{1k}) \rangle$ $p_{2k} = (\hat{z}_{1k} - \beta_{1k}p_{1k})/(1 - \beta_{1k})$ Q. $\tau_{2k} = \tau_{1k} (1 - \beta_{1k}) / \beta_{1k}$ 10: 11: // LMMSE estimation of x $\hat{x}_{2k} = g_{r2}(r_{2k}, p_{2k}, \gamma_{2k}, \tau_{2k}), \quad \alpha_{2k} = \langle g'_{r2}(\dots) \rangle$ 12: 13: $\mathbf{r}_{1,k+1} = (\widehat{\mathbf{x}}_{2k} - \alpha_{2k}\mathbf{r}_{2k})/(1 - \alpha_{2k})$ $\gamma_{1,k+1} = \gamma_{2k} (1 - \alpha_{2k}) / \alpha_{2k}$ 14. 15: // LMMSE estimation of z $\widehat{\boldsymbol{z}}_{2k} = \boldsymbol{g}_{z2}(\boldsymbol{r}_{2k}, \boldsymbol{p}_{2k}, \gamma_{2k}, \tau_{2k}), \quad \beta_{2k} = \langle \boldsymbol{g}'_{z2}(\dots) \rangle$ 16: $p_{1,k+1} = (\widehat{z}_{2k} - \beta_{2k} p_{2k})/(1 - \beta_{2k})$ 17: $\tau_{1,k+1} = \tau_{2k}(1-\beta_{2k})/\beta_{2k}$ 18: 19: end for 20: Return \widehat{x}_{1K} .

Figure 5: GVAMP (GLM)

The state evolution equations are a little thick...

The replica equations are worse ...

They match [TK20], [GAK20], [GAK20+]

Use convex analysis methods :

- Lipschitz constants
- Lyapunov function (control theory methods)
- $\circ\,$ use geometrical properties (strong convexity)

For both VAMP and GVAMP:

Convergent sequences for sufficiently strongly convex problems [GAK20][GAK20+]

Numerical verification : learning a sign teacher

Figure 6: Reconstruction angle $\theta = (\mathbf{x}_0, \mathbf{x}^*)$ as a function of aspect ratio $\alpha = M/N$. Left : a Gaussian i.i.d. matrix **Right** : a random orthogonal invariant matrix with a squared uniform density of eigenvalues.

Thank you